Lipschitz-free spaces over manifolds and the metric approximation property
نویسندگان
چکیده
Let ‖⋅‖ be a norm on RN and let M closed C1-submanifold of RN. Consider the pointed metric space (M,d), where d is given by d(x,y)=‖x−y‖, x,y∈M. Then Lipschitz-free F(M) has approximation property.
منابع مشابه
Approximation and Schur Properties for Lipschitz Free Spaces over Compact Metric Spaces
We prove that for any separable Banach space X, there exists a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space contains a complemented subspace isomorphic to X. As a consequence we give an example of a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space fails the approximation property and we prove that ther...
متن کاملLipschitz Spaces on Compact Manifolds
Let f be a bounded function on the real line IF!. One may characterize the structural properties off by the modulus of smoothness w(t,f) = sup{lf (4 -f( y)l; x, y E 08, I x y I < t>, and, if w(t) is a continuous nondecreasing function of t > 0 such that w(O) = 0, by the Lipschitz class Lip(w) which is the set of all continuous functions such that su~~<~<i w(t, f)/o(t) < 00. It is possible to ex...
متن کاملDifferentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property
In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...
متن کاملSpaces of Lipschitz Functions on Metric Spaces
In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.
متن کاملLipschitz - free Banach spaces
We show that when a linear quotient map to a separable Banach space X has a Lipschitz right inverse, then it has a linear right inverse. If a separable space X embeds isometrically into a Banach space Y , then Y contains an isometric linear copy of X. This is false for every nonseparable weakly compactly generated Banach space X. Canonical examples of nonseparable Banach spaces which are Lipsch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2023
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2023.127073